

Projekt LINDA 4 H₂O – Sicherstellung der Wasserversorgung bei einem großflächigem Stromausfall

1. Wasserforum Schwaben – Wasserzukunft Bayern 2050 Online | 20.03.2023

Hochschule
Augsburg University of
Applied Sciences

Prof. Dr.-Ing. Michael Finkel, MBA Hochspannungs- und Anlagentechnik Fakultät für Elektrotechnik, Hochschule Augsburg

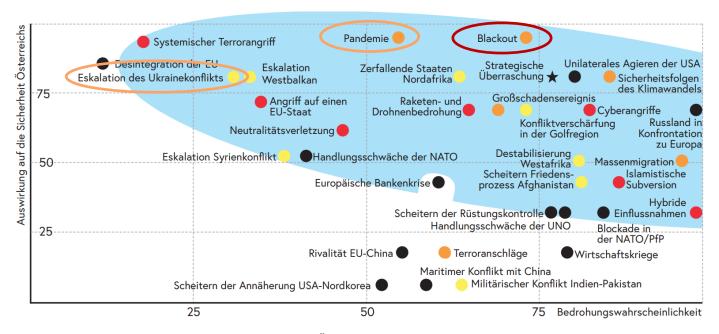
- 1. Motivation
- 2. Forschungsprojekt LINDA 4 H₂O
- 3. Grundsätzliche Eignung von Biogasanlagen zur Notstromversorgung von Wasserversorgungsanlagen im Freistaat Bayern
- 4. Fazit & Ausblick

1. Motivation

- 2. Forschungsprojekt LINDA 4 H₂O
- 3. Grundsätzliche Eignung von Biogasanlagen zur Notstromversorgung von Wasserversorgungsanlagen im Freistaat Bayern
- 4. Fazit & Ausblick

Motivation

- Bei einem langandauernden und großflächigen Stromausfall werden kritische Infrastrukturen stark beeinträchtigt oder fallen gänzlich aus
- Ein gesamtgesellschaftlicher Kollaps mit immensem Schaden ist kaum vermeidbar
- Die Bereitstellung von Trinkwasser gehört im Katastrophenfall zu den wichtigsten Aufgaben


Abbildung 1: Umgeknickte Strommasten im Winter 2005 (Ralf Bosen, DW, "Blackout-Experte: Stromausfall stoppt nicht an deutschen Grenzen", 2018)

vgl. T. Petermann et al., "Was bei einem Blackout geschieht", Studie des Büros für Technikfolgen-Abschätzung beim Deutschen Bundestag

Sicherheitspolitische Einordnung eines Blackouts

Abbildung 2: Verteidigungspolitisches Risikobild Österreich 2020 (Bundesministerium für Landesverteidigung der Republik Österreich, "Sicherheitspolitische Jahresvorschau 2020", Wien, 2019)

- 1. Motivation
- 2. Forschungsprojekt LINDA 4 H₂O
- 3. Grundsätzliche Eignung von Biogasanlagen zur Notstromversorgung von Wasserversorgungsanlagen im Freistaat Bayern
- 4. Fazit & Ausblick

Kurzüberblick Forschungsprojekt LINDA 4 H₂O

- **Projektname**: Lokale Inselnetzversorgung von Wasserversorgungsanlagen mit dezentralen Erzeugungsanlagen bei großflächigen Stromausfällen
- Forschungsfelder:
 - Technische und betriebswirtschaftliche Evaluation der Eignung von Biogasanlagen zur Notversorgung von Trinkwasserversorgungsanlagen
 - Konzeption und Betriebsführung von kleinen Inselnetzen mit dezentralen Erzeugungsanlagen und selektiver Versorgung sensibler Verbraucher
 - Bestimmung der Lastschaltperformance des Biogas-Aggregats als Führungskraftwerk und Erforschung sowie Erprobung von Maßnahmen zur Ertüchtigung des Biogas-Aggregats
- Projektpartner: LfU, Regierung von Schwaben, WWA Donauwörth und weitere

Idee LINDA 4 H₂O

- Entwicklung eines innovativen Konzepts zur dezentralen Sicherstellung der Trinkwasserversorgung im Falle eines langandauernden Stromausfalls
- Idee: Notversorgung von Wasserversorgungsanlagen durch Biogasanlagen im Inselnetzbetrieb

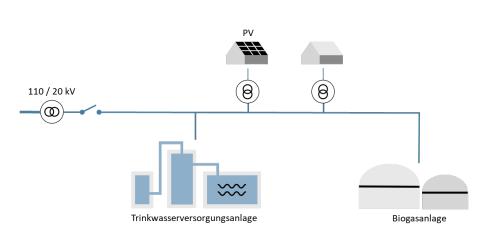


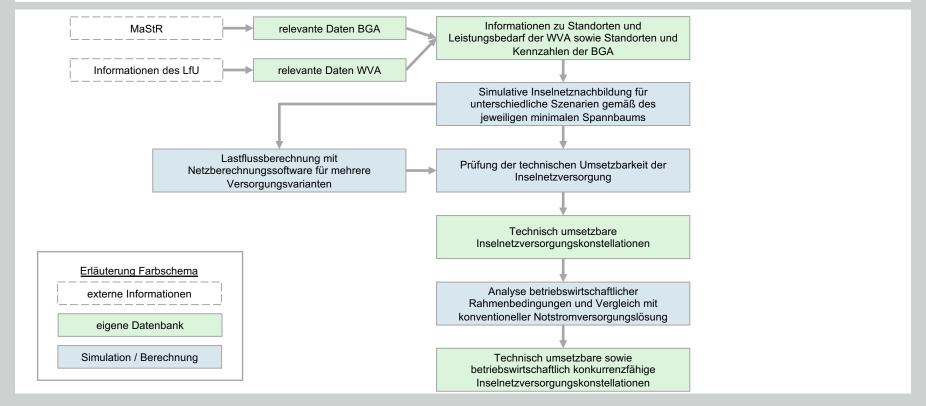
Abbildung 3: Schematische Darstellung der geplanten Inselnetzversorgung

Vorteile einer Inselnetznotstromversorgung mit Biogasanlagen

- Deutlich längere Notversorgungsdauer möglich
- Deutlich größere Unabhängigkeit vom Dieselkraftstoff
 - Zuverlässige Kraftstofflieferungen sind im Krisenfall fraglich
- Keine Kraftstoffe in Trinkwasserschutzgebieten
 - Kein Transport, keine Lagerung und kein Umschlagen
- Ökologischere und regionale Form der Energieerzeugung

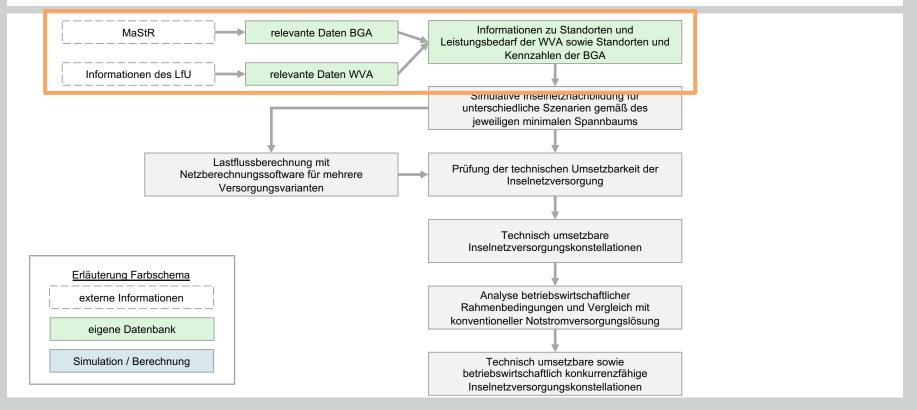
Mögliche Nachteile zu konventionellen Notstromdieselaggregaten:

ggf. höhere Kosten (Investition und Bereitstellung), höhere Komplexität

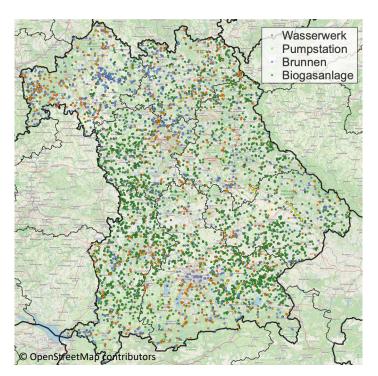


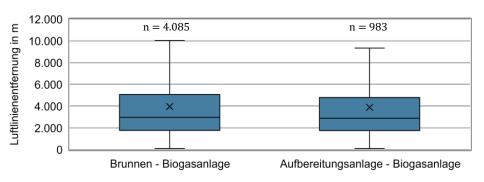
- 1. Motivation
- 2. Forschungsprojekt LINDA 4 H₂O
- 3. Grundsätzliche Eignung von Biogasanlagen zur Notstromversorgung von Wasserversorgungsanlagen im Freistaat Bayern
- 4. Fazit & Ausblick

Untersuchungsmethodik

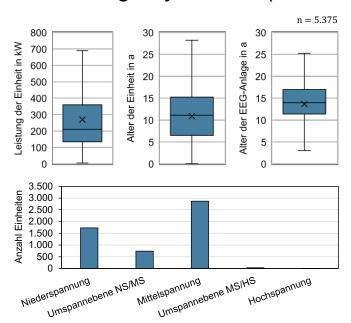


Untersuchungsmethodik

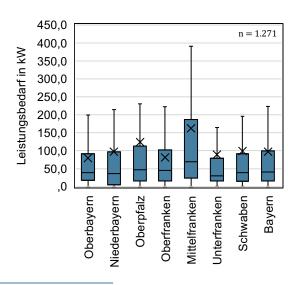



BGA und WVA im Freistaat Bayern

- ca. 3.700 WVA in Bayern
 - hiervon ca. 1.400 mit Brunnen zur Eigengewinnung
- über 5.000 relevante Biomasseeinheiten in Bayern
- räumliche Nähe häufig gegeben:

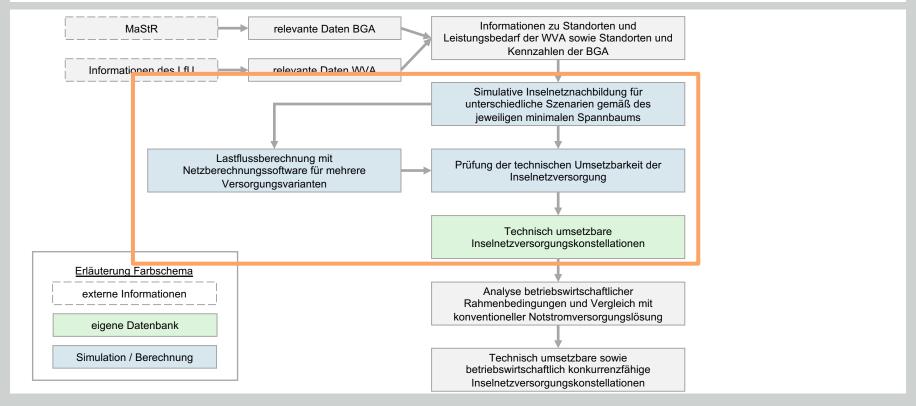


BGA und WVA im Freistaat Bayern



Auswertung bayer. BGA (via MaStR)

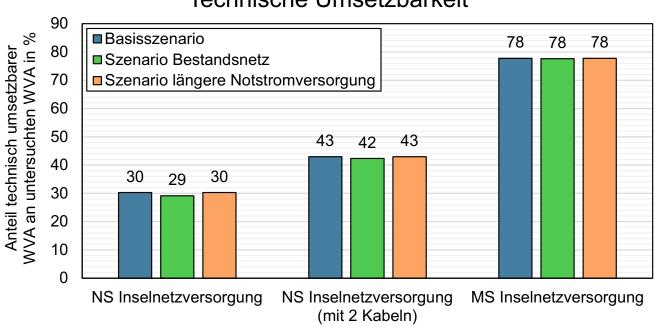
Leistungsbedarf der WVA (LfU-Daten)



vgl. Dominik Storch et al., "Charakterisierung bayerischer Trinkwasserversorgungsanlagen und Approximation des zugehörigen elektrischen Leistungsbedarfs", DVGW energie | wasser-praxis 09/2022, S. 32-39, 2022

Untersuchungsmethodik

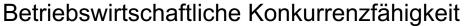
Untersuchte Szenarien

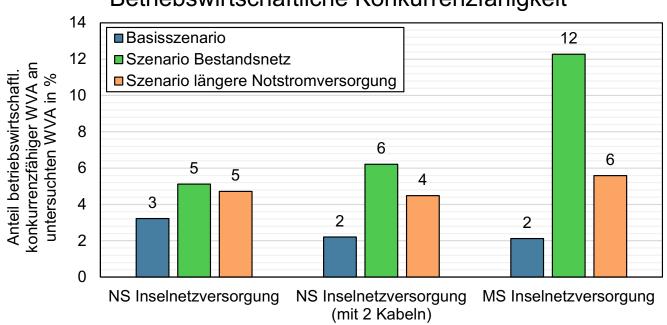

Name	Versorgungsart	Bestandsnetz	Dauer der Alternativ- notstromversorgung
Basisszenario	Vollversorgung	kein nutzbares Bestandsnetz	3 Tage
Szenario Bestandsnetz	Vollversorgung	nutzbares Bestandsnetz zwischen Anlagenteilen d. WVA	3 Tage
Szenario längere Notstromversorgung	Vollversorgung	kein nutzbares Bestandsnetz	7 Tage

Untersuchungsergebnisse

vgl. Dominik Storch et al., "Notstromversorgung von Wasserversorgungsanlagen mit Biogasanlagen im Inselnetz - Analyse der technischen und betriebswirtschaftlichen Umsetzbarkeit", 13. Internationale Energiewirtschaftstagung an der TU Wien, Wien, 2023

Untersuchungsmethodik





Untersuchungsergebnisse

vgl. Dominik Storch et al., "Notstromversorgung von Wasserversorgungsanlagen mit Biogasanlagen im Inselnetz - Analyse der technischen und betriebswirtschaftlichen Umsetzbarkeit", 13. Internationale Energiewirtschaftstagung an der TU Wien, Wien, 2023

- 1. Motivation
- 2. Forschungsprojekt LINDA 4 H₂O
- 3. Grundsätzliche Eignung von Biogasanlagen zur Notstromversorgung von Wasserversorgungsanlagen im Freistaat Bayern
- 4. Fazit & Ausblick

Fazit

- Im Projekt LINDA 4 H₂O wird ein innovatives Konzept zur dezentralen Sicherstellung der Trinkwasserversorgung im Falle eines langandauernden Stromausfalls untersucht
- Die Eignung von Biogasanlagen zur Notstromversorgung im Inselnetzbetrieb wird zunächst allgemein für den gesamten Freistaat Bayern analysiert
 - Grundsätzliches technisches Potential der Inselnetznotstromversorgung ist hoch, betriebswirtschaftliche Konkurrenzfähigkeit ist allerdings nur in der Minderheit der Fälle gegeben
- Bei Erfüllung der technischen Anforderungen bietet eine Inselnetzlösung diverse Vorteile, wie z. B. eine deutlich längere Notstromversorgungsdauer

Ausblick

- Das entwickelte Konzept soll nun in Pilotvorhaben in die Praxis überführt werden
- Die Erkenntnisse sollen verallgemeinert und auf typische Last- und Erzeugungsstrukturen übertragen werden
- Es sollen Eignungskriterien und Handlungsempfehlungen, z. B. für die Ertüchtigung der Betriebsanlagen sowie für den stabilen Aufbau und Betrieb von Notversorgungsinseln abgeleitet werden

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dr.-Ing. Michael Finkel, MBA Hochschule Augsburg Fakultät für Elektrotechnik An der Hochschule 1 86161 Augsburg

Tel.: +49 821 5586-3366

E-Mail: michael.finkel@hs-augsburg.de

Weiterführende Informationen zum Forschungsprojekt

LINDA 4 H₂O finden Sie unter:

